Diastereofacial selectivity in reactions of 2,3,5-trichloro-4,4-dimethoxy-5-allyl- and 2,3-dichloro-3-diethylamino-4-oxo-5-allylcyclopent-2-en-1-ones with MeMgI

M. S. Miftakhov, * R. M. Khalikov, A. A. Fatykhov, and R. R. Akhmetvaleev

Institute of Organic Chemistry, Ufa Scientific Center of Ural Branch of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.

Fax: +7 (347 2) 342 914

Cyclopentenones 1 and 2 react with MeMgI to give predominantly tert-alcohols 3 and 5 of opposite configurations.

Key words: facial selectivity, nucleophiles, trichlorocyclopentenones.

We observed an interesting example of diastereofacial selectivity reversal in the reactions of MeMgI with related cyclopentenones $(1)^{1,2}$ and $(2).^3$ Enone 1 reacts with MeMgI (1.5 equiv.) to give a mixture of epimeric alcohols (3) and (4) in 4:1 ratio (overall yield 85%) (Scheme 1). The stereochemical selectivity of the reaction suggests that steric control occurs, *i.e.*, the bulky C1 atom at C(5) directs the attack to the β -position of molecule 1. However, the direction of a similar reaction of enaminodiketone 2 with MeMgI is reversed, and

opposite selectivity is observed: epimeric alcohols (5) and (6) are formed in 93 % overall yield and in 9:1 ratio.

The structures of the products were determined by spectral methods. The stereochemistry was confirmed by transforming epimer 4 into bicycle (7) and epimer 5 into epoxide (8).

The ¹³C NMR spectra of isomeric alcohols 3,4 and 5,6 are characterized by signals of the methyl and allyl CH₂ groups, which are shifted upfield in the case of

Scheme 1

cis-chlorohydrins 3 and 6. The ¹H NMR spectra display inequivalence of the CH₂ diastereotropic protons of the allyl group, which is markedly higher for cis-chlorohydrin 6 than for the *trans* isomer 5.

It is difficult to unambiguously interpret the results obtained based on the data available for cyclopentenones 1 and 2 (see Refs. 4 and 5).

Experimental

IR spectra were obtained on a UR-20 spectrophotometer in thin films or in suspensions in Nujol. ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 spectrometer at working frequencies of 300 and 75.47 MHz, respectively, using SiMe₄ as the internal standard and CDCl₃ as the solvent. Mass spectra were measured on an MKh-1306 instrument with an ionizing voltage of 70 eV and a temperature of the ionization chamber of 75—100 °C.

(±)-2,3,5α-Trichloro-4,4-dimethoxy-5β-allyl-1β-methylcyclopent-2-en-1α-ol (3) and its 1β-hydroxyepimer (4). A 0.2 N ethereal solution of MeMgI (1.4 mL) was added dropwise under argon to a stirred solution of enone 1 (1.0 g) in dry ether (15 mL). The mixture was stirred for an additional 0.5 h at -40 °C, saturated NH₄Cl (10 mL) was added, and the product was extracted with ether. The combined extracts were dried with Na₂SO₄ and concentrated. Chromatography of the residue on SiO₂ gave 0.9 g (85 %) of epimeric alcohols 3 and 4 in 4:1 ratio (1 H NMR data).

Compound 3. IR, v/cm⁻¹: 3544, 3080, 1640, 1440, 1432, 924, 760. ¹H NMR (CDCl₃), 8: 1.45 (s, 3 H, CH₃); 2.70–2.80 and 3.01–3.10 (m, 2 H, CH₂); 3.10 (s, 1 H, OH); 3.48 and 3.49 (s, 6 H, 2 MeO); 5.08–5.18 (m, 2 H, CH=CH₂); 5.80–6.00 (m, 1 H, CH=CH₂). ¹³C NMR (CDCl₃), 8: 20.13 (CH₃); 39.87 (CH₂); 50.67 (OMe); 52.09 (OMe); 81.19 (C(5)); 85.96 (C(1)); 104.80 (C(4)); 118.21 and 132.74 (CH=CH₂); 129.61 (C(3)); 140.86 (C(2)). MS, *m/z*: 300 [M]⁺ absent, 282 [M-H₂O]⁺, 269 [M-CH₃O]⁺, 265 [M-Cl]⁺, 233 [M-Cl-CH₃OH]⁺.

Compound **4**. ¹H NMR (CDCl₃), δ: 1.50 (s, 3 H, CH₃); 2.7—2.8 and 3.0—3.1 (m, 2 H, CH₂); 3.28 (s, 1 H, OH); 3.43 and 3.50 (s, 6 H, 2 MeO); 5.08—5.18 (m, 2 H, CH=CH₂); 5.80—6.00 (m, 1 H, CH=CH₂). ¹³C NMR (CDCl₃), δ: 22.58 (CH₃); 39.62 (CH₂); 51.39 (OMe); 51.76 (OMe); 81.82 (C(1)); 83.00 (C(5)); 104.41 (C(4)); 118.45 and 133.90 (CH=CH₂); 131.42 (C(3)); 140.15 (C(2)).

(\pm)-2,5 α -Dichloro-3-diethylamino-5 β -allyl-4 β -hydroxy-4 α -methylcyclopent-2-en-1-one (5) and its 4 α -hydroxyepimer (6). Compound 5 (0.8 g) and epimer 6 (0.09 g) were obtained in 93 % overall yield from enedione 2 (0.9 g) by a procedure similar to that for compounds 3 and 4.

Compound 5. ¹H NMR (CDCl₃), δ : 1.26 (t, 6 H, 2 CH₃, J = 6.9 Hz); 1.67 (s, 3 H, CH₃); 2.70—2.90 (m, 2 H, CH₂); 3.60—3.90 (m, 4 H, 2 CH₂—N); 4.10 (br.s, 1 H, OH); 5.10 and 5.70—5.90 (m, 3 H, CH=CH₂). ¹³C NMR, CDCl₃, δ : 14.28 (CH₃); 29.06 (CH₃); 45.27 (CH₂); 46.04 (CH₂—N); 80.26 (C(5)); 81.75 (C(4)); 98.45 (C(2)); 119.78 and 133.77 (CH=CH); 167.70 (C(3)); 186.97 (C(1)).

Compound 6. M.p. 87—89 °C. IR, v/cm⁻¹: 3360—3500, 3095, 1710—1720, 1690, 1655, 1610, 1560—1590. ¹H NMR

(CDCl₃), δ : 1.25 (t, 6 H, 2 CH₃, J = 7.0 Hz); 1.60 (s, 3 H, CH₃); 2.60 and 3.00 (m, 2 H, CH₂); 3.45 (s, 1 H, OH); 3.60—3.90 (m, 4 H, 2 CH₂—N); 5.15—5.25 and 5.95—6.10 (m, 3 H, CH=CH₂). ¹³C NMR (CDCl₃), δ : 14.45 (CH₃); 25.22 (CH₃); 36.93 (CH₂); 45.61 (CH₂—N); 78.83 (C(4)); 79.67 (C(5)); 97.40 (C(2)); 119.10 and 132.03 (CH=CH₂); 168.02 (C(3)); 186.34 (C(1)).

 (\pm) -1 β -Methyl-4 β ,6,7-trichloro-5,5-dimethoxy-3 β mercuriochloromethylenebicyclo[3.3.0]octane (7). Hg(OAc)₂ (0.5 g) was added to a solution of a mixture of isomers 2 and 3 (0.3 g) in CH₂Cl₂ (10 mL). The suspension was stirred for 20 min and treated with aqueous NaCl (1 mL). Stirring was continued for an additional 10 min. The organic layer was washed with saturated NaCl (2 × 10 mL), dried, and concentrated. The residue was chromatographed on a column with SiO₂ to give 0.17 g (57 %) of unreacted isomer 3 and 0.08 g (35 %) of bicyclic compound 7. The IR spectrum of 7 does not contain typical absorption bands of the allylic double bond and hydroxy group. ¹H NMR (CDCl₃), δ: 1.40 (s, 3 H, CH₃); 2.12 (dd, 1 H, $-CH_2Hg$, J = 5.8 Hz and -12.0 Hz); 2.28 (dd, 1 H, CH₂—Hg, J = 5.2 Hz and -12 Hz); 2.32 (dd, 1 H, C(4)—H β , J = 10.8 Hz and -14 Hz); 2.58 (dd, 1 H, C(4)—H α , J = 5.4Hz and -14.0 Hz); 3.45 (s, 3 H, OMe); 3.52 (s, 3 H, OMe); 4.85 (ddd, 1 H, C(3)—H, J = 10.7 Hz, 5.2 Hz, 5.4 Hz, 5.8 Hz). 13 C NMR (CDCl₃), δ : 20.86 (CH₃); 37.58 (CH₂Hg); 49.32 (C(4)); 51.10 (OMe); 52.25 (OMe); 77.79 (C(3)); 82.90 (C(5)); 92.20 (C(1)); 102.40 (C(6)); 128.39 (C(7)); 141.28(C(8)). MS, m/z: 536±4 [M]⁺, 505 [M-Cl]⁺, 299 [M-HgCl]⁺, 267 [M-HgCl--CH₃OH]⁺, 263 [M-HgCl-HCl]⁺, 233 [M- $HgCl-HCl-CH_2O]^+$ (max), 229 $[M-HgCl_2-Cl]^+$

(±)-2-Chloro-3-diethylamino-4b,5b-epoxy-4a-methyl-5a-allylcyclopent-2-en-1-one (8). K_2 CO₃ (0.23 g) was added to a stirred solution of *trans*-chlorohydrin 5 (0.1 g) in MeOH (5 mL). After the reaction ceased (TLC monitoring), the mixture was diluted with CHCl₃, filtered, and concentrated. The residue was chromatographed to give 0.07 g (81 %) of epoxide 8. IR, v/cm^{-1} : 3080, 3056, 1724, 1702, 1695, 1568. ¹H NMR, CDCl₃, δ: 1.30 (t, 6 H, 2 CH₃, J = 7.2 Hz); 1.70 (s, 3 H, CH₃); 2.25–2.38 and 3.00–3.10 (m, 2 H, CH₂); 3.50–3.80 (m, 4 H, 2 CH₂—N); 5.10 and 5.80 (m, 3 H, CH=CH₂). ¹³C NMR, CDCl₃, δ: 13.58 (CH₃); 13.99 (CH₃); 28.88 (CH₂); 45.24 (CH₂—N); 61.41 (C(4)); 68.02 (C(5)); 101.90 (C(2)); 118.28 and 130.97 (CH=CH₂); 167.01 (C(3)); 190.09 (C(1)).

References

- S. A. Ismailov, Zh. Org. Khim., 1989, 25, 2238 [J. Org. Chem., 1989, 25 (Engl. Transl.)].
- G. A. Tolstikov, S. A. Ismailov, E. V. Prishchepova, and M. S. Miftakhov, *Zh. Org. Khim.*, 1991, 27, 2034 [*J. Org. Chem.*, 1991, 27 (Engl. Transl.)].
- 3. R. M. Khalikov, Ph. D. (Chem.) Thesis, Inst. of Org. Chem. of Ural Scientific Center, Russian Academy of Sciences, Ufa, 1994 (in Russian).
- A. Ismailov, M. S. Miftakhov, and G. A. Tolstikov, Mend. Commun., 1991, 4, 149.
- G. A. Tolstikov, S. A. Ismailov, L. M. Khalilov, and M. S. Miftakhov, Zh. Org. Khim., 1992, 28, 212 [J. Org. Chem., 1992, 28 (Engl. Transl.)].